Gleitende Mittelwerte Gleitende Mittelwerte Mit herkömmlichen Datenbeständen ist der Mittelwert oft die erste und eine der nützlichsten, zusammenfassenden Statistiken, die berechnet werden. Wenn die Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel eine nützliche Maßnahme, spiegelt aber nicht die dynamische Natur der Daten wider. Meanwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorangehen oder auf die aktuelle Periode zentriert sind, sind oft nützlicher. Weil solche Mittelwerte sich ändern oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t & sub2 ;, t & sub3; usw. bewegt, werden sie als gleitende Durchschnittswerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (üblicherweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Da es keine einzige, sondern eine ganze Reihe von gleitenden Mittelwerten für eine beliebige Reihe gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und in der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese werden als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache gleitende Mittelwerte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, können t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist, so wählen wir eine ganze Zahl k, die viel kleiner als n ist. Können wir einen Satz von Blockdurchschnitten oder einfache Bewegungsdurchschnitte (der Ordnung k) berechnen: Jede Messung repräsentiert den Durchschnitt der Datenwerte über einem Intervall von k Beobachtungen. Man beachte, daß das erste mögliche MA der Ordnung kgt0 dasjenige für tk ist. Allgemeiner können wir den zusätzlichen Index in die obigen Ausdrücke schreiben und schreiben: Dies bedeutet, daß der geschätzte Mittelwert zum Zeitpunkt t der einfache Mittelwert des beobachteten Wertes zum Zeitpunkt t und den vorhergehenden k -1 Zeitschritten ist. Wenn Gewichte angewandt werden, die den Beitrag von Beobachtungen verringern, die weiter weg in der Zeit sind, wird der gleitende Durchschnitt als exponentiell geglättet. Gleitende Mittelwerte werden häufig als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich der Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisherigen aufgezeichneten Werte bis einschließlich gestern (für tägliche Daten). Einfache gleitende Mittelwerte können als eine Form der Glättung gesehen werden. In dem nachfolgend dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-tägige gleitende Linie (MA) ergänzt, die hier in Rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Spitzen und Täler in den Daten und kann sehr hilfreich sein, um Trends zu identifizieren. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k-1-Datenpunkte keinen MA-Wert haben, aber danach rechnen sich die Berechnungen bis zum Enddatenpunkt in der Reihe. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Mittelwerte in der beschriebenen Weise ist, dass es Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden kann, und Wenn eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 zu dem bereits berechneten Satz addiert werden. Dies bietet eine einfache Vorgehensweise für dynamische Datensätze. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass sich der Mittelwert der letzten 3 Perioden zum Zeitpunkt t -1, nicht zur Zeit t, befinden sollte. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte sie sich in der Mitte zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem besteht darin, zentrierte MA-Berechnungen zu verwenden, bei denen der MA zum Zeitpunkt t der Mittelwert einer symmetrischen Menge von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz nicht allgemein verwendet, weil er erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall sein kann. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas bevorzugt sein. Einfache gleitende Mittelwerte können als eine Form von Glättung, Entfernen einiger Hochfrequenzkomponenten einer Zeitreihe und Hervorhebung (aber nicht Entfernen) von Trends in einer ähnlichen Weise wie der allgemeine Begriff der digitalen Filterung betrachtet werden. Tatsächlich sind die gleitenden Mittelwerte eine Form eines linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Mittelwert der Ordnung 2 die Berechnungen unter Verwendung von Gewichten betrachten, so daß die MA bei x 2 0,5 x 1 0,5 x 2 gilt. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3 Eine zweite Glättungs - oder Filterstufe anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, dh die zweistufige Filterung Prozess (oder Faltung) einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt hat. Mehrere Windungen können sehr komplexe gewichtete gleitende Durchschnitte erzeugen, von denen einige speziell in Spezialgebieten, wie etwa in Lebensversicherungsberechnungen, gefunden wurden. Bewegungsdurchschnitte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel können mit monatlichen Daten saisonale Schwankungen oft entfernt werden (wenn dies das Ziel ist), indem Sie eine symmetrische 12-monatigen gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden 13 Monate im symmetrischen Modell (aktuelle Zeit, t - 6 Monate). Die Gesamtzahl wird durch 12 geteilt. Ähnliche Verfahren können für jede wohldefinierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel werden alle Beobachtungen gleich gewichtet. Wenn wir diese Gleichgewichte, alpha t. Jedes der k Gewichte würde 1 k betragen. So dass die Summe der Gewichte würde 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses in die Gewichte variieren führen. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus mehr zeitlich entfernten Beobachtungen verringert, wodurch neuere (lokale) Ereignisse hervorgehoben werden. Im wesentlichen wird ein Glättungsparameter 0lt alpha lt1 eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel würde die Form haben: Wenn die Gewichte im symmetrischen Modell als die Ausdrücke der Terme der Binomialdehnung ausgewählt werden, (1212) 2q. Sie summieren sich auf 1, und wenn q groß wird, nähert sich die Normalverteilung. Dies ist eine Form der Kerngewichtung, wobei das Binomial als Kernfunktion dient. Die im vorigen Teilabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die geometrisch verkleinern. Die verwendeten Gewichte haben typischerweise die Form: Um zu zeigen, daß diese Gewichte zu 1 summieren, betrachten wir die Erweiterung von 1 als Reihe. Wir können den Ausdruck in Klammern schreiben und erweitern, indem wir die binomische Formel (1- x) p verwenden. Wobei x (1-) und p-1, was ergibt, ergibt sich daraus eine Form des gewichteten gleitenden Mittelwerts der Form: Diese Summation kann als eine Rekursionsrelation geschrieben werden, die die Berechnung erheblich vereinfacht und das Problem vermeidet, Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von Alpha ist dies typischerweise nicht der Fall). Die von verschiedenen Autoren verwendete Schreibweise variiert. Einige verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist, und schreiben: während die kontrolltheoretische Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1) , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die Formeln, die oben zitiert wurden, stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form, die für die Verwendung in einigen Kontrollverfahren geeigneter sein kann. Bei alpha 1 ist die mittlere Schätzung einfach ihr gemessener Wert (oder der Wert des vorherigen Datenelements). Bei 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und vorherigen Messungen. In Prognosemodellen wird der Wert S t. Wird oft als Schätzwert oder Prognosewert für die nächste Zeitperiode, dh als Schätzung für x zum Zeitpunkt t 1, verwendet. Somit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination des vorherigen exponentiell gewichteten gleitenden Durchschnitts ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Wenn eine Zeitreihe gegeben wird und eine Prognose erforderlich ist, ist ein Wert für alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadrierten Prädiktionsfehler, die mit variierenden Werten von alpha für jedes t 2,3 erhalten werden, ausgewertet wird. Wobei der erste Schätzwert der erste beobachtete Datenwert x ist. Bei Steueranwendungen ist der Wert von alpha wichtig, da er bei der Bestimmung der oberen und unteren Steuergrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen unterbrochen werden (unter der Annahme, dass die Zeitreihe eine Menge von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz festgelegt, z. B. - 3-fache Standardabweichung. Wenn beispielsweise & alpha; 0,25 angenommen wird und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, werden bei der Steuerung die Steuergrenzen - 1,134 und der Prozess eine oder andere Grenze in 500 Schritten erreichen im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen unter Verwendung von Markov-Chain-Prozeduren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben worden ist. Beispielsweise beträgt bei einer 0,5-Verschiebung mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze sind als einzelne exponentielle Glättung bekannt. Da die Prozeduren einmal auf die Zeitreihe angewendet werden und dann Analysen oder Steuerprozesse auf dem resultierenden geglätteten Datensatz durchgeführt werden. Wenn der Datensatz einen Trend enthält unddie saisonalen Komponenten, können zwei - oder dreistufige exponentielle Glättungen angewendet werden, um diese Effekte zu entfernen (explizit modellieren) (siehe weiter unten im Abschnitt "Prognose" und im Beispiel von NIST). CHA1 Chatfield C (1975) Die Analyse der Zeitreihen: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Qualitätstechnologie, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete gleitende durchschnittliche Kontrollschemata: Eigenschaften und Verbesserungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltests auf der Grundlage geometrischer Bewegungsdurchschnitte. Technometrics, 1, 239-2506.2 Gleitende Mittelwerte ma 40 elecales, order 5 41 In der zweiten Spalte dieser Tabelle wird ein gleitender Durchschnitt der Ordnung 5 gezeigt, der eine Schätzung des Trendzyklus liefert. Der erste Wert in dieser Spalte ist der Durchschnitt der ersten fünf Beobachtungen (1989-1993) der zweite Wert in der 5-MA-Spalte ist der Durchschnitt der Werte 1990-1994 und so weiter. Jeder Wert in der Spalte 5-MA ist der Mittelwert der Beobachtungen in den fünf Jahren, die auf das entsprechende Jahr zentriert sind. Es gibt keine Werte für die ersten zwei Jahre oder die letzten zwei Jahre, weil wir nicht zwei Beobachtungen auf beiden Seiten haben. In der obigen Formel enthält Spalte 5-MA die Werte von Hut mit k2. Um zu sehen, wie die Trend-Schätzung aussieht, stellen wir sie zusammen mit den Originaldaten in Abbildung 6.7 dar. Grundstück 40 elecsales, HauptsacheResidential Elektrizität salesquot, ylab quotGWhquot. Xlab quotYearquot 41 Zeilen 40 ma 40 elecales, 5 41. col quotredquot 41 Beachten Sie, wie der Trend (in rot) glatter als die ursprünglichen Daten ist und erfasst die Hauptbewegung der Zeitreihe ohne alle geringfügigen Schwankungen. Die gleitende Mittelmethode erlaubt keine Abschätzungen von T, wobei t nahe den Enden der Reihe ist, so daß sich die rote Linie nicht zu den Kanten des Graphen beiderseits erstreckt. Später werden wir anspruchsvollere Methoden der Trend-Zyklus-Schätzung verwenden, die Schätzungen nahe den Endpunkten erlauben. Die Reihenfolge des gleitenden Mittelwerts bestimmt die Glätte der Tendenzschätzung. Im Allgemeinen bedeutet eine größere Ordnung eine glattere Kurve. Die folgende Grafik zeigt die Auswirkung der Veränderung der Reihenfolge des gleitenden Durchschnitts für die privaten Stromverkaufsdaten. Einfache gleitende Mittelwerte wie diese sind meist ungerade (z. B. 3, 5, 7 usw.). Das ist also symmetrisch: In einem gleitenden Durchschnitt der Ordnung m2k1 gibt es k frühere Beobachtungen, k spätere Beobachtungen und die mittlere Beobachtung Die gemittelt werden. Aber wenn m gerade war, wäre es nicht mehr symmetrisch. Gleitende Mittelwerte der gleitenden Mittelwerte Es ist möglich, einen gleitenden Durchschnitt auf einen gleitenden Durchschnitt anzuwenden. Ein Grund hierfür besteht darin, einen gleitenden Durchschnitt gleichmäßig symmetrisch zu machen. Zum Beispiel könnten wir einen gleitenden Durchschnitt der Ordnung 4 nehmen und dann einen anderen gleitenden Durchschnitt der Ordnung 2 auf die Ergebnisse anwenden. In Tabelle 6.2 wurde dies für die ersten Jahre der australischen vierteljährlichen Bierproduktionsdaten durchgeführt. Beer2 lt - fenster 40 ausbeer, start 1992 41 ma4 lt - ma 40 beer2, bestellen 4. center FALSE 41 ma2x4 lt - ma 40 beer2, bestellen 4. center TRUE 41 Die Notation 2times4-MA in der letzten Spalte bedeutet ein 4-MA Gefolgt von einem 2-MA. Die Werte in der letzten Spalte werden durch einen gleitenden Durchschnitt der Ordnung 2 der Werte in der vorhergehenden Spalte erhalten. Beispielsweise sind die ersten beiden Werte in der 4-MA-Säule 451,2 (443410420532) 4 und 448,8 (410420532433) 4. Der erste Wert in der 2 × 4-MA-Säule ist der Durchschnitt dieser beiden: 450,0 (451.2448.8) 2. Wenn ein 2-MA einem gleitenden Durchschnitt gleicher Ordnung folgt (wie z. B. 4), wird er als zentrierter gleitender Durchschnitt der Ordnung 4 bezeichnet. Dies liegt daran, dass die Ergebnisse nun symmetrisch sind. Um zu sehen, dass dies der Fall ist, können wir die 2times4-MA wie folgt schreiben: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big amp frac y frac14y frac14y frac14y frac18y. Ende Es ist jetzt ein gewichteter Durchschnitt der Beobachtungen, aber er ist symmetrisch. Andere Kombinationen von gleitenden Durchschnitten sind ebenfalls möglich. Beispielsweise wird häufig ein 3times3-MA verwendet und besteht aus einem gleitenden Durchschnitt der Ordnung 3, gefolgt von einem anderen gleitenden Durchschnitt der Ordnung 3. Im allgemeinen sollte bei einer geraden Ordnung MA eine gerade Ordnung MA folgen, um sie symmetrisch zu machen. Ähnlich sollte eine ungerade Ordnung MA eine ungerade Ordnung MA folgen. Schätzung des Trendzyklus mit saisonalen Daten Die häufigste Verwendung von zentrierten Bewegungsdurchschnitten ist die Schätzung des Trendzyklus aus saisonalen Daten. Betrachten Sie die 2times4-MA: hat frac y frac14y frac14y frac14y frac18y. Bei der Anwendung auf vierteljährliche Daten wird jedes Quartal des Jahres gleiches Gewicht gegeben, wie die ersten und letzten Bedingungen für das gleiche Quartal in aufeinander folgenden Jahren gelten. Infolgedessen wird die saisonale Veränderung ausgemittelt und die resultierenden Werte von Hut t haben wenig oder keine saisonale Veränderung übrig. Ein ähnlicher Effekt würde mit einem 2 × 8-MA oder einem 2 × 12-MA erhalten werden. Im allgemeinen ist ein 2-mal m-MA äquivalent zu einem gewichteten gleitenden Durchschnitt der Ordnung m1, wobei alle Beobachtungen 1 m betragen, mit Ausnahme der ersten und letzten Glieder, die Gewichte 1 (2 m) nehmen. Also, wenn die saisonale Zeit ist gleichmäßig und der Ordnung m, verwenden Sie eine 2times m-MA, um den Trend-Zyklus zu schätzen. Wenn die saisonale Periode ungerade und der Ordnung m ist, verwenden Sie eine m-MA, um den Trendzyklus abzuschätzen. Insbesondere kann ein 2 × 12-MA verwendet werden, um den Trendzyklus der monatlichen Daten abzuschätzen, und ein 7-MA kann verwendet werden, um den Trendzyklus der täglichen Daten abzuschätzen. Andere Optionen für die Reihenfolge der MA wird in der Regel in Trend-Zyklus Schätzungen durch die Saisonalität in den Daten kontaminiert werden. Beispiel 6.2 Herstellung elektrischer Geräte Abbildung 6.9 zeigt ein 2times12-MA, das auf den Index der elektrischen Ausrüstung angewendet wird. Beachten Sie, dass die glatte Linie keine Saisonalität zeigt, ist sie nahezu identisch mit dem in Abbildung 6.2 gezeigten Trendzyklus, der mit einer viel anspruchsvolleren Methode geschätzt wurde als die gleitenden Durchschnittswerte. Jede andere Wahl für die Reihenfolge des gleitenden Durchschnitts (mit Ausnahme von 24, 36 usw.) hätte zu einer glatten Linie geführt, die einige saisonale Schwankungen zeigt. Plot 40 elecequip, ylab quotNew Aufträge indexquot. (Euroregion) 41 Zeilen 40 ma 40 elecequip, bestellen 12 41. col quotredquot 41 Gewichtete gleitende Mittelwerte Kombinationen gleitender Mittelwerte ergeben gewichtete gleitende Mittelwerte. Zum Beispiel ist das oben diskutierte 2x4-MA äquivalent zu einem gewichteten 5-MA mit Gewichten, die durch frac, frac, frac, frac, frac gegeben werden. Im allgemeinen kann ein gewichtetes m-MA als Hut t sum k aj y geschrieben werden, wobei k (m-1) 2 und die Gewichte durch a, dots, ak gegeben sind. Es ist wichtig, daß die Gewichte alle zu eins zusammenfallen und daß sie symmetrisch sind, so daß aj a. Der einfache m-MA ist ein Spezialfall, bei dem alle Gewichte gleich 1m sind. Ein großer Vorteil von gewichteten gleitenden Durchschnitten ist, dass sie eine glattere Schätzung des Trendzyklus ergeben. Anstelle von Beobachtungen, die die Berechnung bei Vollgewicht verlassen und verlassen, werden ihre Gewichte langsam erhöht und dann langsam verringert, was zu einer glatteren Kurve führt. Einige spezifische Sätze von Gewichten sind weit verbreitet. Einige davon sind in Tabelle 6.3 aufgeführt. Zeitreihenanalyse: Der Prozess der Saisonbereinigung Was sind die beiden Hauptphilosophien der saisonalen Anpassung Was ist ein Filter Was ist das Endpunktproblem Wie entscheiden wir, welcher Filter zu verwenden ist Was ist eine Verstärkungsfunktion Was ist eine Phasenverschiebung Was sind Henderson-Bewegungsdurchschnitte Wie gehen wir mit dem Endpunktproblem um? Was sind saisonale gleitende Mittelwerte Warum werden Trendschätzungen überarbeitet Wie viele Daten benötigt werden, um annehmbare saisonbereinigte Schätzungen zu erhalten ADVANCED Wie beurteilen die beiden saisonalen Anpassungsphilosophien WAS SIND DIE ZWEI HAUPTSPHILOSOPHIEN DER SEASONALEN EINSTELLUNG Die beiden Hauptphilosophien für die saisonale Anpassung sind die modellbasierte Methode und die Filter-basierte Methode. Filterbasierte Methoden Diese Methode wendet einen Satz von festen Filtern (gleitende Mittelwerte) an, um die Zeitreihen in eine Trend-, Saison - und unregelmäßige Komponente zu zerlegen. Der zugrunde liegende Gedanke ist, dass die Wirtschaftsdaten aus einer Reihe von Zyklen zusammengesetzt sind, einschließlich der Konjunkturzyklen (der Trend), saisonale Zyklen (Saisonalität) und Lärm (die unregelmäßige Komponente). Ein Filter entfernt im Wesentlichen die Stärke bestimmter Zyklen aus den Eingangsdaten. Um eine saisonbereinigte Reihe von monatlich gesammelten Daten zu erzeugen, müssen Ereignisse, die alle 12, 6, 4, 3, 2.4 und 2 Monate auftreten, entfernt werden. Diese entsprechen saisonalen Frequenzen von 1, 2, 3, 4, 5 und 6 Zyklen pro Jahr. Die längeren nicht-saisonalen Zyklen gelten als Teil des Trends und die kürzeren nicht-saisonalen Zyklen bilden die unregelmäßigen. Jedoch kann die Grenze zwischen dem Trend und den irregulären Zyklen mit der Länge des Filters variieren, der verwendet wird, um den Trend zu erhalten. In ABS saisonale Anpassung sind Zyklen, die erheblich zur Tendenz beitragen, in der Regel größer als etwa 8 Monate für monatliche Serien und 4 Quartalen für vierteljährliche Serien. Der Trend, saisonale und irreguläre Komponenten brauchen keine expliziten individuellen Modelle. Die unregelmäßige Komponente ist definiert als das, was nach dem Trend bleibt und saisonale Komponenten wurden durch Filter entfernt. Irregulars zeigen keine weißen Rauscheigenschaften. Filterbasierte Methoden werden oft als X11-Stilmethoden bezeichnet. Dazu gehören X11 (entwickelt von U. S. Census Bureau), X11ARIMA (von Statistics Canada entwickelt), X12ARIMA (entwickelt von U. S. Census Bureau), STL, SABL und SEASABS (das von der ABS verwendete Paket). Computational Unterschiede zwischen verschiedenen Methoden in X11 Familie sind vor allem das Ergebnis der verschiedenen Techniken an den Enden der Zeitreihen verwendet. Beispielsweise verwenden einige Verfahren asymmetrische Filter an den Enden, während andere Verfahren die Zeitreihe extrapolieren und symmetrische Filter auf die erweiterte Serie anwenden. Modellbasierte Methoden Dieser Ansatz erfordert, dass Trend, saisonale und unregelmäßige Komponenten der Zeitreihe separat modelliert werden. Es geht davon aus, dass die unregelmäßige Komponente 8220weißes Rauschen8221 ist - das heißt, alle Zykluslängen sind gleich dargestellt. Die Unregelmäßigen haben Null-Mittelwert und eine konstante Varianz. Die saisonale Komponente hat ein eigenes Rauschen. Zwei weit verbreitete Softwarepakete, die modellbasierte Methoden anwenden, sind STAMP und SEATSTRAMO, die von der Bank von Spanien entwickelt werden. Eine wesentliche Berechnungsunterschiede zwischen den verschiedenen modellbasierten Methoden sind in der Regel auf Modellspezifikationen zurückzuführen, in manchen Fällen werden die Komponenten direkt modelliert Müssen die ursprünglichen Zeitreihen zunächst modelliert und die Komponentenmodelle daraus zersetzt werden. Für einen Vergleich der beiden Philosophien auf einem fortgeschritteneren Niveau, siehe Wie die beiden saisonalen Anpassung Philosophien vergleichen WAS IST EIN FILTER Filter können verwendet werden, um sich zu zersetzen Eine Zeitreihe in einen Trend, eine saisonale und eine irreguläre Komponente Die gleitenden Mittelwerte sind eine Art von Filter, die aufeinanderfolgend eine Verschiebungszeitspanne von Daten schätzen, um eine geglättete Schätzung einer Zeitreihe zu erzeugen. Diese geglättete Reihe kann als abgeleitet betrachtet werden Indem eine Eingabeserie durch einen Prozess geleitet wird, der bestimmte Zyklen ausfiltert, wodurch ein gleitender Durchschnitt oft als Filter bezeichnet wird. Das grundlegende Verfahren beinhaltet das Definieren eines Satzes von Gewichten der Länge m 1 m 2 1 als: Anmerkung: Ein symmetrischer Satz von Gewichten hat m 1 m 2 und wjw - j. Ein gefilterter Wert zum Zeitpunkt t kann berechnet werden, indem Y t den Wert beschreibt Der Zeitreihe zum Zeitpunkt t. Man betrachte beispielsweise folgende Reihen: Unter Verwendung eines einfachen symmetrischen 3-Term-Filters (dh m 1 m 2 1 und alle Gewichte sind 13) wird der erste Term der geglätteten Reihe durch Anwenden der Gewichte auf die ersten drei Terme des Originals erhalten Serie: Der zweite geglättete Wert wird durch Anwenden der Gewichte auf den zweiten, dritten und vierten Term in der ursprünglichen Serie erzeugt: WAS IST DAS ENDPUNKT-PROBLEM Die Serie überdenken: Diese Reihe enthält 8 Begriffe. Jedoch enthält die geglättete Reihe, die durch Anwenden eines symmetrischen Filters auf die ursprünglichen Daten erhalten wird, nur 6 Ausdrücke: Das liegt daran, daß an den Enden der Reihe nicht genügend Daten vorhanden sind, um ein symmetrisches Filter anzuwenden. Der erste Term der geglätteten Reihe ist ein gewichteter Durchschnitt von drei Terme, der auf den zweiten Term der ursprünglichen Reihe zentriert ist. Ein gewichteter Mittelwert, der auf den ersten Term der ursprünglichen Reihe zentriert ist, kann nicht als Daten erhalten werden, bevor dieser Punkt nicht verfügbar ist. Ebenso ist es nicht möglich, einen gewichteten Mittelwert zu berechnen, der auf den letzten Term der Reihe zentriert ist, da keine Daten nach diesem Punkt vorliegen. Aus diesem Grund können symmetrische Filter nicht an jedem Ende einer Serie verwendet werden. Dies wird als Endpunktproblem bezeichnet. Zeitreihenanalytiker können asymmetrische Filter verwenden, um geglättete Schätzungen in diesen Regionen zu erzeugen. In diesem Fall wird der geglättete Wert 8216off centre8217 berechnet, wobei der Durchschnitt unter Verwendung von mehr Daten von einer Seite des Punktes als dem anderen gemäß dem, was verfügbar ist, bestimmt wird. Alternativ können Modellierungstechniken verwendet werden, um die Zeitreihen zu extrapolieren und dann symmetrische Filter auf die erweiterte Serie aufzubringen. WIE WIR ENTFERNEN, WELCHES FILTER ZU BENUTZEN Der Zeitreihenanalytiker wählt einen geeigneten Filter, der auf seinen Eigenschaften basiert, wie z. B. welche Zyklen der Filter bei Anwendung entfernt. Die Eigenschaften eines Filters können mit einer Verstärkungsfunktion untersucht werden. Verstärkungsfunktionen werden verwendet, um die Wirkung eines Filters bei einer gegebenen Frequenz auf die Amplitude eines Zyklus für eine bestimmte Zeitreihe zu untersuchen. Für weitere Informationen über die Mathematik, die mit Verstärkungsfunktionen verknüpft ist, können Sie die Time Series Kursnotizen, eine Einführung in die Zeitreihenanalyse, die von der Zeitreihenanalyse des ABS veröffentlicht wird, herunterladen (siehe Abschnitt 4.4). Das folgende Diagramm ist die Verstärkungsfunktion für das symmetrische 3-Term-Filter, das wir früher untersucht haben. Abbildung 1: Verstärkungsfunktion für symmetrische 3-Term-Filter Die horizontale Achse stellt die Länge eines Eingangszyklus in Bezug auf die Periode zwischen den Beobachtungspunkten in der ursprünglichen Zeitreihe dar. So ist ein Eingabezyklus der Länge 2 in 2 Perioden abgeschlossen, was 2 Monate für eine monatliche Serie und 2 Quartale für eine vierteljährliche Serie entspricht. Die vertikale Achse zeigt die Amplitude des Ausgabezyklus relativ zu einem Eingangszyklus. Dieser Filter reduziert die Festigkeit von 3 Periodenzyklen auf Null. Das heißt, sie entfernt vollständig Zyklen von etwa dieser Länge. Dies bedeutet, dass für eine Zeitreihe, in der Daten monatlich gesammelt werden, alle saisonalen Effekte, die vierteljährlich auftreten, durch Anwendung dieses Filters auf die ursprüngliche Serie eliminiert werden. Eine Phasenverschiebung ist die Zeitverschiebung zwischen dem gefilterten Zyklus und dem ungefilterten Zyklus. Eine positive Phasenverschiebung bedeutet, dass der gefilterte Zyklus rückwärts verschoben wird und eine negative Phasenverschiebung zeitlich verschoben wird. Eine Phasenverschiebung tritt auf, wenn das Timing der Wendepunkte verzerrt ist, zum Beispiel wenn der gleitende Durchschnitt von den asymmetrischen Filtern außermittig platziert wird. Das heißt, sie werden entweder früher oder später in der gefilterten Serie auftreten als im Original. Ungerade symmetrische Bewegungsdurchschnitte (wie sie vom ABS verwendet werden), bei denen das Ergebnis mittig platziert wird, bewirken keine zeitliche Phasenverschiebung. Es ist wichtig, dass Filter, die verwendet werden, um den Trend abzuleiten, die Zeitphase und somit den Zeitpunkt jedes Wendepunktes beizubehalten. Die 2 und 3 zeigen die Effekte der Anwendung eines 2 × 12 symmetrischen gleitenden Mittelwertes, der außerhalb der Mitte liegt. Die kontinuierlichen Kurven repräsentieren die Anfangszyklen und die unterbrochenen Kurven repräsentieren die Ausgangszyklen nach dem Anlegen des gleitenden Durchschnittsfilters. Abbildung 2: 24-Monate-Zyklus, Phase -5,5 Monate Amplitude 63 Abbildung 3: 8-Monatszyklus, Phase -1,5 Monate Amplitude 22 WAS SIND HENDERSON BEWEGENDE AVERAGEN Henderson-Bewegungsdurchschnitte sind Filter, die von Robert Henderson 1916 für den Einsatz in versicherungsmathematischen Anwendungen abgeleitet wurden. Sie sind Trendfilter, die üblicherweise in der Zeitreihenanalyse verwendet werden, um saisonbereinigte Schätzungen zu glätten, um eine Trendschätzung zu erzeugen. Sie werden bevorzugt einfacheren gleitenden Durchschnitten verwendet, da sie Polynome bis zu Grad 3 reproduzieren können, wodurch Trendkurvenpunkte erfasst werden. Das ABS verwendet Henderson gleitende Mittelwerte, um Trendschätzungen aus einer saisonbereinigten Serie zu erzeugen. Die von der ABS veröffentlichten Trendschätzungen werden typischerweise unter Verwendung eines 13-term-Henderson-Filters für monatliche Serien und eines 7-term-Henderson-Filters für vierteljährliche Serien abgeleitet. Henderson-Filter können entweder symmetrisch oder asymmetrisch sein. Symmetrische Bewegungsdurchschnitte können an Punkten angewandt werden, die ausreichend weit entfernt von den Enden einer Zeitreihe liegen. In diesem Fall wird der geglättete Wert für einen gegebenen Punkt in der Zeitreihe aus einer gleichen Anzahl von Werten auf beiden Seiten des Datenpunkts berechnet. Um die Gewichte zu erhalten, wird ein Kompromiss zwischen den beiden Merkmalen, die allgemein von einer Trendreihe erwartet werden, erreicht. Dies ist, dass der Trend in der Lage sein, eine breite Palette von Krümmungen darstellen und dass es auch so glatt wie möglich sein sollte. Zur mathematischen Ableitung der Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Die von der ABS-Website heruntergeladen werden können. Die Gewichtungsmuster für einen Bereich symmetrischer Henderson-Bewegungsdurchschnitte sind in der folgenden Tabelle angegeben: Symmetrisches Gewichtungsmuster für Henderson Moving Average Im allgemeinen gilt, je länger der Trendfilter ist, desto glatter der resultierende Trend, wie sich aus einem Vergleich der Verstärkungsfunktionen ergibt über. Ein 5-term-Henderson reduziert Zyklen von etwa 2,4 Perioden oder weniger um mindestens 80, während ein 23-Term-Henderson reduziert Zyklen von etwa 8 Perioden oder weniger um mindestens 90. In der Tat ein 23-Term-Henderson-Filter entfernt vollständig Zyklen von weniger als 4 Perioden . Henderson bewegte Durchschnitte dämpfen auch die Jahreszeitzyklen in unterschiedlichen Graden. Jedoch zeigen die Verstärkungsfunktionen in den 4 - 8, dass die jährlichen Zyklen in den Monats - und Quartalsreihen nicht signifikant genug gedämpft werden, um die Anwendung eines Henderson-Filters direkt auf ursprüngliche Schätzungen zu rechtfertigen. Aus diesem Grund werden sie nur auf eine saisonbereinigte Reihe angewendet, wo die kalenderbedingten Effekte bereits mit speziell entwickelten Filtern entfernt wurden. Abbildung 9 zeigt die Glättungseffekte des Anwendens eines Henderson-Filters auf eine Serie: Abbildung 9: 23-Term-Henderson-Filter - Wert der Nicht-Wohngebäude Zulassungen WIE MACHEN WIR MIT DEM ENDPUNKT-PROBLEM Der symmetrische Henderson-Filter kann nur auf Regionen angewendet werden Von Daten, die ausreichend weit von den Enden der Reihe entfernt sind. Zum Beispiel kann die Standard-13-Term Henderson nur auf monatliche Daten angewendet werden, die mindestens 6 Beobachtungen vom Anfang oder Ende der Daten sind. Dies liegt daran, dass die Filterglätte der Reihe, indem sie einen gewichteten Durchschnitt der 6 Begriffe auf beiden Seiten des Datenpunktes sowie den Punkt selbst. Wenn wir versuchen, es auf einen Punkt anzuwenden, der weniger als 6 Beobachtungen von dem Ende der Daten ist, dann sind nicht genügend Daten auf einer Seite des Punktes verfügbar, um den Durchschnitt zu berechnen. Um Trendschätzungen dieser Datenpunkte zu liefern, wird ein modifizierter oder asymmetrischer gleitender Durchschnitt verwendet. Die Berechnung von asymmetrischen Henderson-Filtern kann durch eine Anzahl verschiedener Methoden erzeugt werden, die ähnliche, aber nicht identische Ergebnisse liefern. Die vier Hauptmethoden sind die Musgrave-Methode, die Minimierung der Mittelwert-Revisionsmethode, die Methode der besten linearen unregelmäßigen Schätzungen (BLUE) und die Kenny - und Durbin-Methode. Shiskin et. Al (1967) die ursprünglichen asymmetrischen Gewichte für den Henderson-gleitenden Durchschnitt, die innerhalb der X11-Pakete verwendet werden. Für Informationen über die Ableitung der asymmetrischen Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Man betrachte eine Zeitreihe, bei der der letzte beobachtete Datenpunkt zum Zeitpunkt N auftritt. Dann kann ein 13-term-symmetrisches Henderson-Filter nicht auf Datenpunkte angewendet werden, die zu jedem Zeitpunkt nach und einschließlich Zeit N-5 gemessen werden. Für alle diese Punkte muss ein asymmetrischer Satz von Gewichten verwendet werden. Die folgende Tabelle gibt das asymmetrische Gewichtungsmuster für einen normalen 13-Term-Henderson-gleitenden Durchschnitt. Die asymmetrischen 13-term-Henderson-Filter entfernen oder dämpfen nicht dieselben Zyklen wie der symmetrische 13-Term-Henderson-Filter. Tatsächlich verstärkt das asymmetrische Gewichtungsmuster, das verwendet wird, um den Trend bei der letzten Beobachtung zu schätzen, die Stärke von 12 Periodenzyklen. Auch asymmetrische Filter erzeugen eine zeitliche Phasenverschiebung. WAS SIND SEASONAL MOVING AVERAGES Fast alle Daten, die vom ABS untersucht werden, haben saisonale Eigenschaften. Da die Henderson-Bewegungsdurchschnitte, die verwendet wurden, um die Trendreihen abzuschätzen, nicht die Saisonalität beseitigen, müssen die Daten saisonbereinigt zuerst mit saisonalen Filtern eingestellt werden. Ein Saisonfilter hat Gewichte, die im gleichen Zeitraum über die Zeit angewendet werden. Ein Beispiel des Gewichtungsmusters für einen saisonalen Filter wäre: (13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13), wobei zum Beispiel ein Gewicht von einem Drittel auf drei aufeinanderfolgende Januars angewendet wird. Within X11, a range of seasonal filters are available to choose from. These are a weighted 3-term moving average (ma) S 3x1 . weighted 5-term ma S 3x3 . weighted 7-term ma S 3x5 . and a weighted 11-term ma S 3x9 . The weighting structure of weighted moving averages of the form, S nxm . is that a simple average of m terms calculated, and then a moving average of n of these averages is determined. This means that nm-1 terms are used to calculate each final smoothed value. For example, to calculate an 11-term S 3x9 . a weight of 19 is applied to the same period in 9 consecutive years. Then a simple 3 term moving average is applied across the averaged values: This gives a final weighting pattern of (127, 227, 19, 19, 19, 19, 19, 19, 19, 227, 127). The gain function for an 11 term seasonal filter, S 3x9 . looks like: Figure 10: Gain Function for 11 Term (S 3x9 ) Seasonal Filter Applying a seasonal filter to data will generate an estimate of the seasonal component of the time series, as it preserves the strength of seasonal harmonics and dampens cycles of non-seasonal lengths. Asymmetric seasonal filters are used at the ends of the series. The asymmetric weights for each of the seasonal filters used in X11 can be found in section 5.4 of the Time Series Course Notes . WHY ARE TREND ESTIMATES REVISED At the current end of a time series, it is not possible to use symmetric filters to estimate the trend because of the end point problem . Instead, asymmetric filters are used to produce provisional trend estimates. However, as more data becomes available, it is possible to recalculate the trend using symmetric filters and improve the initial estimates. This is known as a trend revision. HOW MUCH DATA IS REQUIRED TO OBTAIN ACCEPTABLE SEASONALLY ADJUSTED ESTIMATES If a time series exhibits relatively stable seasonality and is not dominated by the irregular component, then 5 years of data can be considered an acceptable length to derive seasonally adjusted estimates from. For a series that shows particularly strong and stable seasonality, a crude adjustment can be made with 3 years of data. It is generally preferable to have at least 7 years of data for a normal time series, to precisely identify seasonal patterns, trading day and moving holiday effects, trend and seasonal breaks, as well as outliers. ADVANCED HOW DO THE TWO SEASONAL ADJUSTMENT PHILOSOPHIES COMPARE Model based approaches allow for the stochastic properties (randomness) of the series under analysis, in the sense that they tailor the filter weights based on the nature of the series. The model8217s capability for accurately describing the behaviour of the series can be evaluated, and statistical inferences for the estimates are available based on the assumption that the irregular component is white noise. Filter based methods are less dependent on the stochastic properties of the time series. It is the time series analyst8217s responsibility to select the most appropriate filter from a limited collection for a particular series. It is not possible to perform rigorous checks on the adequacy of the implied model and exact measures of precision and statistical inference are not available. Therefore, a confidence interval cannot be built around the estimate. The following diagrams compare the presence of each of the model components at the seasonal frequencies for the two seasonal adjustment philosophies. The x axis is the period length of the cycle and the y axis represents the strength of the cycles which comprise each component: Figure 11: Comparison of the two seasonal adjustment philosophies Filter based methods assume that the each component exists only a certain cycle lengths. The longer cycles form the trend, the seasonal component is present at seasonal frequencies and the irregular component is defined as cycles of any other length. Under a model based philosophy, the trend, seasonal and irregular component are present at all cycle lengths. The irregular component is of constant strength, the seasonal component peaks at seasonal frequencies and the trend component is strongest in the longer cycles. This page first published 14 November 2005, last updated 25 July 2008
No comments:
Post a Comment